Radar level sensor wholesale manufacturer with Kaidi86: Radar level meter adopts non-contact measurement, and has the advantages of high measurement accuracy, not affected by process conditions, easy to install and easy to maintain, so it is widely used in offshore oil platforms in recent years. Today, we would like to take you through several actual cases in offshore oil platform to understand the reasons and solutions of the radar level meter’s measurement value jumping. The first case was an oil field where the radar level meter in the left crude tank jumped to full scale several times during production. A sealed metal cover was used to cover the main body of the sensor, and during the test, it was found by connecting the radar level transmitter that the closed metal cover would result in more false signals throughout the measurement range, and the overall noise line would rise. See even more information on https://www.kaidi86.com/radar-level-meter.html.

There is AC interference and the voltage is high. For example, for the radar level meter used in the production line, the power supply requirement is 24VDC (typical value), but in the on-site measurement, it is found that the power supply is displayed as 27.2V, which is significantly higher than 24VDC, resulting in a large measurement result and even a radar level meter. crash phenomenon. The installation position of the radar level meter is incorrect, which leads to deviations in the measurement. For example, the accumulation of aggregates in the transfer bin is a “mountain”-shaped cone, but only one radar level meter is installed near the discharge port of the return belt. , the installation position is too close to the discharge opening of the return belt, and at the same time, it is too far from the discharge opening of the feeding belt on both sides. Just below the radar level meter is the drop point of the return belt. If the distance is too close, the aggregate in the falling process will interfere with the radar level meter and form false reflections.

The key components are made of high-quality materials, which have strong corrosion resistance and can adapt to highly corrosive environments. Low power consumption, can use solar power to supply power, no need to build water level wells, adapt to various geographical environments, no impact on water flow, and more convenient installation and maintenance. The parameter setting is convenient, and the false echo from the liquid surface to the antenna can be automatically identified by the software carried by itself to eliminate the interference.

An important part of steam generation is the quality of the steam generated. Maintaining water quality in the boiler within design parameters ensures the highest quality steam possible while minimizing blowdown of the boiler, both of which improve energy and resource management. Continuous or manual blowdown of the boiler minimizes scale accumulation and corrosion resulting from impurities in the water. The blowdown provides a means of accommodating liquid and impurities from the boiler, with the latter facilitating energy recovery through the use of flash steam.

In the process of cement production, material level detection and material level alarm control play an important role from mining and crushing to storage and packing of finished cement. But because of the complex working conditions of cement plant, radar level meter has no small difficulty in measuring. Today, I would like to talk with you about specific difficulties and solutions. First cement plant material for measurement in the dust under the condition of particularly large, especially some pneumatic feed bin, involves the kinds of materials, material particle size is differ, dielectric constant is different also, such as broken limestone, raw meal, clinker, fly ash, coal, cement, the level of the bunker, it is very difficult to accurately measure Especially fly ash bin with low dielectric constant.

KAIDI level transmitter manufacturer is dedicated in providing complete customized solutions for a wide range of industrial automation process applications – in material level, liquid flow, pressure and temperature. We are constantly developing and innovating, our core vision – “to provide solutions that exceed customers’ expectations. In 2012, the company successfully expanded its operations both locally and internationally, achieving global success and recognition for quality fork type level switch, magnetic level gauge products and services. Discover more information at kaidi86.com. Our Radar Level Meter has a range of up to 150 meters, frequency up to 120GHz and an accuracy of ±1mm, which can cope with various complex measurement conditions.

The radar level gauge works by electromagnetic waves. Its working principle is to measure the specific liquid level by transmitting electromagnetic waves to the measured target. After the electromagnetic waves are emitted, they are reflected by the medium. For the radar level gauge, its key function is to ensure that it can transmit magnetrol guided wave radar signals smoothly. In our industrial production site, interference often occurs, so which interference sources will affect the measurement of the radar level gauge? let’s see.

Under many operating conditions, ultrasonic level meter and radar level meter are commonly used. Some users are very entangled in the choice of these two level meter and do not know how to choose. Today, let’s talk about the principles and selection principles of these two types of level meter . Principle and selection principle of ultrasonic level meter. Working principle: The ultrasonic pulse probe emits a beam of ultrasonic pulses to the measured medium, and the sound wave is reflected by the liquid surface. The distance between the liquid levels is measured by measuring the time difference between the emission and reflection of the sound waves. Since the ultrasonic level gauge is not a liquid, it can be used to measure corrosive, non-volatile and non-foaming places.

Temperature Compensation- Precision in Any Environment Another advancement in guided radar level measurement technology is the incorporation of mechanisms that compensate for temperature variations. Temperature fluctuations in microwave module circuits can lead to inaccuracies in measuring levels. To tackle this challenge, radar level measurement systems have implemented creative solutions. A crucial aspect of these advancements involves allocating a portion of the radar transmission pulse as a reference pulse. This reference pulse serves as a benchmark for comparing measurements enabling temperature calibration. When temperature changes occur the radar sensor can adjust its measurements accordingly ensuring that environmental conditions have no impact on accuracy. This temperature compensation feature is particularly valuable in applications where significant temperature shifts are common. Industries dealing with temperatures or processes prone to variations, such as petrochemical or food manufacturing sectors, rely on precise measurements. Radar sensors equipped with temperature compensation mechanisms rise to the occasion by delivering reliable results despite changing conditions.

Application conditions, application conditions generally include calm liquid level, slightly fluctuating surface, turbulent surface, with stirring, with foam and so on. The more complex the conditions, the more interference echoes, and the smaller the actual measured range. In a complex environment, a precision radar with strong ability to deal with interference echoes or an antenna with a larger size should be selected.