Excellent flow meter device supplier factory: The third case is that, during the commissioning stage of a platform construction, when the liquid level is higher than 3800mm, the radar level meter of the dirty oil tank will frequently jump to 0mm, which leads to the shutdown of the fourth-stage production unit. After on-site inspection, the power supply voltage of the radar level meter transmitter is only 9.5V, which is lower than the working power supply voltage of the radar level meter. By further searching for the cause of the failure, found that when the high liquid level, the voltage at the power supply is 23.7V, the safety gate output drops to 9.7V, judged as a safety gate transmitter failure. After replacing the safety grid, the voltage returns to normal, the cabin radar level meter in the test to rule out the problem. Discover more details at flow meter manufacturer.

Temperature Compensation- Precision in Any Environment Another advancement in guided radar level measurement technology is the incorporation of mechanisms that compensate for temperature variations. Temperature fluctuations in microwave module circuits can lead to inaccuracies in measuring levels. To tackle this challenge, radar level measurement systems have implemented creative solutions. A crucial aspect of these advancements involves allocating a portion of the radar transmission pulse as a reference pulse. This reference pulse serves as a benchmark for comparing measurements enabling temperature calibration. When temperature changes occur the radar sensor can adjust its measurements accordingly ensuring that environmental conditions have no impact on accuracy. This temperature compensation feature is particularly valuable in applications where significant temperature shifts are common. Industries dealing with temperatures or processes prone to variations, such as petrochemical or food manufacturing sectors, rely on precise measurements. Radar sensors equipped with temperature compensation mechanisms rise to the occasion by delivering reliable results despite changing conditions.

If the radar level meter is unreasonably selected, the interference echo cannot be handled well, and the reliability of the instrument will be reduced. Therefore, the following factors should be considered when selecting a radar level meter: Conductivity and dielectric constant of the measured medium. The measured medium is a conductive liquid or a liquid with a dielectric constant above 4. Generally, a common radar is selected. Liquids with small dielectric constants (dielectric constants below 2) and some conductive solids often use precision radars or guided wave radars due to the large amount of interference echoes.

The electromagnetic wave emitted during measurement can pass through the vacuum, no transmission medium is required, and the anti-interference ability is strong, and it is not affected by temperature, wind, water vapor, water mist, rain, etc. It can be used for liquid level measurement of almost all liquids, and can be continuously measured on-line unattended. Large measurement range, high precision, mature technology and stable performance.

The performance of any level technology relative to instrument induced errors, calibration nuances, and vulnerabilities to process dynamics can have an immediate and adverse impact on fuel consumption. Seamless response to changes in demand and reducing maintenance associated with the instrumentation or damage to hardware are residual benefits that have their own financial ramifications; these aspects should also be considered when implementing any technology. In addition to the “open” or deaerating feedwater heater, the more common shell and tube heat exchangers/condensers can be found in larger scale steam generation cycles where their costs are offset by gains in thermal efficiency. The effectiveness of a shell and tube heat exchanger in transferring energy is contingent, barring hardware anomalies, on accurate level control.

In addition, some silos in cement plants are very high, such as homogenizing silos of 50cm. It takes time and energy to board high silos to debug radar, so it is recommended to choose HART handheld operators that can be debugged remotely in the central control room. In the central control room, the range and other basic parameters can be set, and the radar echo waveform can be observed, and the waveform can be used for remote diagnosis and debugging, greatly reducing the on-site work intensity of the staff, to avoid the risk of climbing operation. The smart radar level gauge commonly used at present also has a function similar to “driving recorder”, that is, when the material surface mutation occurs on the scene, it can capture the radar echo waveform at that time, which is very useful for debugging the silo under complex conditions.

As one of the most professional magnetic level indicators manufacturers in China,Guangdong Kaidi Energy Technology Co., Ltd. provides customized solutions for a range of industrial automation process applications,such as mechanical float level indicator.We specialized in radar level gauge, fork type level switch,etc. These were implemented successfully, and KAIDI magnetic level gauge manufacturers products,such as radar level meter, magnetic level indicators, can be used in many different industries such as food & beverage, water, energy, pharmaceutical etc. Find even more information at https://www.kaidi86.com/. Our Radar Level Meter has a range of up to 150 meters, frequency up to 120GHz and an accuracy of ±1mm, which can cope with various complex measurement conditions.

Mechanical interference, the so-called mechanical interference, means that some components inside the radar level sensor will also vibrate due to the large-scale vibration or impact of the external machine, and even undergo displacement and deformation, which may also cause the pointer of the instrument head to loosen and cause measurement. error. In this case, we usually use spacers, shock springs, etc. to cushion the shock.

When the distance between the liquid level of the measured medium and the electromagnetic wave transmitter is less than 4m, the guided wave radar is selected. If the distance between the liquid level of the measured medium and the electromagnetic wave transmitter is greater than 4m and less than 35m, select the guided wave radar with the guided wave cable. When the distance between the liquid level of the measuring medium and the electromagnetic wave transmitter is greater than 35m, or when the liquid level of the measuring medium is high temperature, high viscosity or solid liquid level, the air-shooting radar should be selected.

Product features: The gas display is red and the liquid display is green, the luminous display is clear, the observation is large, and the visual distance is long. The liquid level sensor can be clearly displayed by red and green light column, which is suitable for application in dark places and more eye-catching at night. The body is made of stainless steel, the level meter display device does not contact the medium in the container, and there is no leakage. Suitable for first, second and third class containers, suitable for containers containing flammable, toxic and corrosive media.